Tech is fun and flourishing
Sarah Jewell

As we move into a world of driverless cars, the internet of things and robots powered by artificial intelligence, the technology industry’s thirst for a skilled workforce is set to grow exponentially. In this special supplement we examine the opportunities for breaking into tech careers. As a starting point, there are more than 2,000 computer science courses on offer in the UK that can lead to work as a software engineer, IT consultant, business analyst, data analyst, cybersecurity consultant, network engineer, app developer and more.

Degree apprenticeships are an OUT route in, where you can work and study at the same time. As the head of HE at Tech Partnership says: “There’s that excitement about doing something ‘real’ as opposed to doing something theoretical.” The role of big data scientist has been described as “the sexiest job of the 21st century” and it is reckoned that 56,000 jobs in data will be created in the UK each year until 2020. As Chris Morris, a software engineering graduate says: “Computers and technology are only going to be a bigger part of everyday life, so we are not going to run out of work.” Opportunities for women are expanding and there are a growing number of organisations aimed at recruiting women into the industry. As one course leader says: “Once you make the initial contact, you’ll find out that these are incredibly welcoming spaces – hackathons and codeathons are very supportive, collaborative environments.”

And one of the fastest-growing technology specialisms is gaming. A multitude of different platforms – TVs, smartphones, tablets and PCs – fuels an industry that contributes £1.2bn to the UK’s GDP every year; find out more on the next page.

Jobs are plentiful, salaries are high and it’s a growing area. What’s not to like about working in tech, asks David Benady.

here’s never been a more exciting time to break into technology. With sky-high starting salaries for the top candidates and a dearth of skilled staff across the industry, this is a profession with a huge thirst for new talent. It offers good long-term job prospects and a chance to work at the cutting edge of innovation.

From developing next-generation smartphone apps and videogames to defending networks against cyber-attack, from setting the algorithms that power high-frequency stock market trading to helping people find new friends on social networks, careers in technology span a huge range of roles.

A degree in computer science from a prestigious university is the key to getting a top job in software engineering, cybersecurity or data. But you don’t need to be a geek or a maths genius. There are self-taught mobile app developers, website designers and IT specialists from a range of backgrounds who have moved into tech. Up to a quarter of technology workers have few formal qualifications in the field, according to a survey by recruitment firm hire.com. With an abundance of apprenticeships and self-study courses available, tech careers are open to anybody who can think logically and creatively and enjoys messing around with computer code.

More than half a million new digital jobs are expected to be created in the UK by 2022, three times the number of computer science graduates produced in the past 10 years, according to the UK Commission for Employment and Skills.

Some fear there will be a lack of suitably experienced candidates to fill the posts. “Helping young people break into tech is really important and we have to inspire them to do that,” says Ann Picking, human resources director at O2. “The digital economy is growing quickly and opening up a lot of opportunities for businesses like O2. That means we want digitally skilled workers. If we are not careful, if businesses don’t start working with schools - we are going to struggle to fill all those vacancies,” she says.

O2 has hired 45 school leavers as apprentices this year. Its annual scheme, which lasts between 18 months and two years, gives students the required digital skills to work at the company as social and digital marketers, mobile app developers and customer service “gurus”, as well as in many other roles. In a separate scheme, the company has retrained women who have returned to technology positions.

One of the fastest-growing technology specialisms of recent years has been developing smartphone apps. Scott Ross, international chief technology office at Digita Labs, which creates mobile apps for leading brands, says there is little formal training available for app developers and they are largely self-taught. They learn the technical requirements for mobile systems and frameworks from manuals produced by Apple and Google. “You need curiosity, you need to have a logical mind and the ability to figure out some of these things yourself. If you have those three things, you are more likely than going to do well in this space,” says Ross.

He adds that young, inexperienced developers have an advantage over more experienced ones. “As developers and engineers, we are always switching programming languages during our careers and you always have to untrain some bad habits and practices. Young people with little experience don’t have that baggage.”

Almost every business now needs some sort of technology expertise, with 41% of the UK’s 1.6m tech jobs in non-digital businesses, according to Tech City UK, which promotes digital industry. Banks, retailers, insurers, the NHS, accountancy firms and manufacturers are all vying with specialist technology consultants to hire the best staff. Across these organisations, there is a huge demand for cybersecurity engineers, software developers, data analysts, IT consultants and salespeople, technical support staff and telecommunications experts. The UK’s thriving tech startup scene is also an option for skilled staff with an entrepreneurial mindset.
‘You can control your own career’

Being on a graduate trainee scheme has enabled Chris Morris to experience all sorts of IT roles and shape his professional future

Chris Morris joined the graduate training scheme at IT consultancy Cap Gemini straight from Loughborough University in 2013. After a short induction course, he began working on a variety of projects as a software engineer, including testing systems developed for clients, creating new software and training staff in companies to use it, as well as creating reports and forecasting.

“I’m really enjoying it,” he says. “As an industry, computers and technology are only going to become a bigger part of everyday life, so we are not going to run out of work. New products come out all the time, so it is really interesting to have the chance to work with these.”

He has worked with teams of Cap Gemini engineers and clients to discover the software they need, then design and implement it. This means working in clients’ offices, which can involve travel and staying away from home for three or four nights a week.

On one project, he worked with a business to create a system for recording sales. That meant creating dashboards where staff could see the sales data each day and analyse it.

“Rather than rebuild the old system we started again. It had a whole new set of data, which contained more information and we built a whole data warehouse to take in all the data each day, aggregate it, perform calculations and then update the dashboards. This is shared across the business, so every morning people can come in and see the data from the previous day.”

Morris studied IT management for business at Loughborough University after taking A-levels in IT, economics and business, maths and PE.

“I decided to keep going with it because it was enjoyable and there is always new stuff coming out, so I joined Cap Gemini. At an IT consultancy firm you have a chance to work on different projects, taking on different roles in the projects.”

He says the graduate scheme has given him a chance to try out a wide variety of IT skills. “There are so many roles that need doing. You have the ability to control your own career and pick which training you do to build up the knowledge you need to progress to a certain area.”

Interview by David Benady
The classic route to a successful tech career is to qualify with a first or 2.1 in computer science from a leading university and join a graduate training scheme at an IT consultancy, tech giant, ecommerce retailer or investment bank. Imperial College London, Cambridge and St Andrews in Scotland are among the top computer science institutions in the UK, but there are many other colleges with strong reputations in this field.

“There is a huge interest,” says Joyce Lewis, senior fellow for partnerships and business development at the Faculty of Physical Sciences and Engineering at the University of Southampton. “We see more and more applications for the computer science course, with increasing numbers of top candidates. Young people are using computers all the time, so already, from a young age, they are thinking about what they can do with the technology.”

To get on to a computer science course students typically need a top A-level grade - A or A* - in mathematics and their other subjects.

Southampton turns out between 70 and 100 computer science graduates each year and many of them progress to graduate training schemes. The department’s annual careers fair is attended by up to 90 companies, with technology consultancies such as Cap Gemini, Accenture and PwC and chip makers including Arm and Imagination Technologies, plus logistics companies, retailers and banks.

A range of roles are open to computer science graduates. They might become software engineers, writing the programmes for business computer systems, or security engineers, protecting systems from cyber-attacks. Lewis says computer science graduates with a 2.1 or above can expect starting salaries of £50,000 or more when they join a tech consultancy or a top business. Jobs in banking, writing code for quantitative traders who carry out high-frequency stock market trading, for instance, are paid more like £70,000.

With more than 2,000 computer science courses on offer in the UK, from 95 higher education institutions, there is plenty to choose from. But not all computer science graduates find work quickly. The Shadbolt Review, published earlier this year, said computer science graduates have a high level of unemployment, with more than 10% still looking for work after six months. The report attributes this to a range of factors, noting that graduates from computer science sandwich courses were more employable.

Despite these levels of unemployment, the UK tech industry suffers from a lack of candidates with the right skills. Mehul Patel, chief executive of hired.com, a San Francisco-based online recruitment marketplace for technology and knowledge workers, says the UK scene has a massive skills shortage. His company’s report, Mind the Gap, which analysed hundreds of jobs at companies and thousands of candidates, revealed that cybersecurity engineers are most in demand – due to a stream of high-profile hacking cases and data breaches. Next come data engineers, serving businesses’ thirst to make use of the huge amounts of data they collect about their customers. There is also strong demand for people who can use programming languages Python and Ruby.

But it’s not all about graduates, according to the hired.com report: 25% of tech staff do not have a computer science degree; many are self-taught. Some candidates with higher degrees in subjects such as geology or sociology – subjects that incorporate statistical analysis – subjects that incorporate statistical analysis - make the shift over to data engineering jobs. “What employers are looking for is experience – and when you don’t have work experience, and you are a graduate, they look at where you went to university. “If a self-taught coder has worked at Facebook and Uber, the next employer is not going to care that they don’t have the formal training.”
Women in tech

Is technology still a man’s world?

While girls generally excel at school, Stem subjects are the exception to the rule. Lucy Jolin asks if this is changing

S

ometimes I’d walk into the lab and the guys – although they were nice – just seemed to stop talking,” says Rosa Fox, 26, of her time at university studying music infomatics at the University of Sussex. She only gained confidence in her abilities when, at the University of Sussex, she started going to events like the Ladies Who Code conference.

“Sometimes I’d walk into the lab and the guys – although they were nice – just seemed to stop talking,” says Rosa Fox, 26, of her time at university studying music infomatics at the University of Sussex. She only gained confidence in her abilities when, at the University of Sussex, she started going to events like the Ladies Who Code conference. Although she had absolutely no coding experience before the degree. But that ended up being absolutely perfect for me – and after a bit of a learning curve, I was making things I never thought I would be able to make. My final degree project was a game where the player wears an EEG headset that feeds brainwave data into the game in real time. After her degree, she spent a few months creating an online portfolio. “I designed my own little games and spent a bit of time in education, going into schools and helping IT teachers teach kids how to code using Scratch.”

Rosa Fox

We teach about the tech, but we also teach confidence. It’s a very supportive environment

Creative engineer Emily Mitchell, 24, loved art and design at school, and loved playing video games at home. “One day, I just thought: why can’t I make video games? That would be a really cool career.” It was the first step along a pathway that led to her current role at digital and physical technology design studio Knot, designing bespoke creative technology for clients such as the V&A.

Emily Mitchell

A passion for video games prompted Emily Mitchell to seek out a career in creative technology

Looking for a place where technology and creativity intersect, she took a BSc (Hons) in creative computing at Goldsmiths, University of London. “I thought it would be a lot more artistic but it was actually quite programming-based, which was really alarming to start with,” she says. “When I graduated I had absolutely no coding experience before the degree. But that ended up being absolutely perfect for me – and after a bit of a learning curve, I was making things I never thought I would be able to make. My final degree project was a game where the player wears an EEG headset that feeds brainwave data into the game in real time. After her degree, she spent a few months creating an online portfolio. “I designed my own little games and spent a bit of time in education, going into schools and helping IT teachers teach kids how to code using Scratch.”

Emily Mitchell

Programming with elements of medical imaging and virtual reality

In April 2016 she joined Knit, doing, as she says, “pretty much everything that I love doing, which is awesome.” I get to do software and hardware engineering and am developing cutting-edge tech all the time. I mostly do research and development. Recently I’ve built virtual reality apps for 360-degree viewing. I’ve also been working on a project for the V&A – a physical digital version of a thing called a Rube Goldberg machine. It’s a machine where one thing triggers another thing, which triggers another – a whole series of interactions.”

Rosa Fox

Mitchell is planning to stay at Knit and continue working on bespoke projects. “Tech can seem like a daunting industry, especially if you haven’t studied anything similar at school. But once you put your head into that world, you’ll find it’s very inclusive. So go to hackathons – they’re really nurturing places – and create and learn any way you can.”

Rosa Fox

Women in tech

Rule.

asks if at school, Stem subjects...
Study with a salary

Tech company degree apprenticeships offer workplace training and study without the headache of student debt, writes David Benady

illie Tedder, 19, didn’t want to go to university - it wasn’t a way of studying that appealed to her, and it was expensive. But she could see the value in getting a degree. So when her school didn’t come up with any alternatives, she went on the web and discovered that BT offers degree apprenticeships. She could work at BT, earning a wage, and study for a degree at the same time.

She’s now a year into her apprenticeship, working towards a foundation degree in IT TV. “I’m really enjoying it. I get to put my learning into practice straight away. I’d urge anyone who’s interested to give it a go. Anyone can find out about them - you just need to do a bit of research yourself.”

Degree apprenticeships are exactly what they say on the tin. They’re run in partnership with a company and a training provider, usually a university. You work for the company and study towards your degree at the same time. What you learn will be put into practice as you work. Your fees are paid, and you also get a wage, meaning that you come out at the end of the apprenticeship with a degree and no debt.

They’re a great fit for the kind of skills you need in a tech career. “We’ve created a model which offers a really good alternative to young people,” says Bob Cliff, head of higher education at Tech Partnership, the employers’ organisation creating skills for the UK’s digital economy. It has created a digital and technology solutions BSc (Hons), with six specialisms based around the most common entry-level jobs in tech: software engineer, IT consultant, IT business analyst, data analyst, cyber security analyst and network engineer.

“Go back a few years and you couldn’t get into a tech role in a big company without a degree unless you had experience.

“There’s that excitement about doing something ‘real’ as opposed to doing something more theoretical. You’re being taught concepts and then cementing that knowledge by doing practical work. That means that you’re developing skills much sooner than you would do in university, where there’s more theory and case-study work.”

IBM started its first degree apprenticeships in October 2015, with seven apprentices working their way towards a BSc in digital and technology solutions, in partnership with two universities, Queen Mary’s in London and Glasgow Caledonian in Scotland. Students in Glasgow attend for one day a week, Queen Mary’s for two, and the rest of the time is spent in the workplace.

“Our students do work-based assignments, so they have the opportunity to include leading-edge technology in their university degree,” says Jenny Taylor, graduate, apprenticeship and student manager at IBM. “It benefits us because we’re developing really high-quality technical professionals. So it’s a win-win all around. The key challenge is to balance the academic study and pressures with doing a proper job in the workplace. Apprentices do real roles - there would be no value if they didn’t. But there is a lot of support and mentoring from IBM and from their universities.”

It’s not just pure technology companies that offer them, either. Consulting firm Accenture takes in between 30 and 40 degree apprentices a year to work towards a BSc in software engineering, in partnership with training provider QA, whose course is accredited by the University of Roehampton, the University of Sunderland and Newcastle College.

“Most of the work that we do for our clients is underpinned by technology,” says Emma McGuigan, managing director for Accenture’s UK and Ireland Technology Group. “We need to have people who are very skilled in specific topics - a coding language, understanding agile methodologies, how to get a product to market much more quickly. But we also want diverse teams, and the breadth of applications we get for the degree apprenticeship is amazing. We want to look like our clients. Degree apprenticeships are a real game-changer for us – and there’s never been a better time to work in technology.”

Degree apprenticeships

Degree apprenticeships are offered in partnership with training providers and universities, although they are currently only available in England. Apprentices study for a minimum of three years and work at the same time, receiving a salary. The degree is fully funded by the employer and the government, so apprentices graduate with no course-related debt. Employers receive a completion fee of £2,700 per degree from the government.

To find a degree apprenticeship, look on your chosen company’s website and the government’s degree apprenticeship website, gov.uk/apply-apprenticeship.

Your degree will have exactly the same status as any other degree. DB
High-profile projects await women seeking a career in technology at PwC

Women make up just 14.4% of science, technology, engineering and mathematics personnel in the UK (WISE, 2015). One of the main reasons, research has shown, is that tech careers have an image problem. And it’s easy to get the impression from the media that a passion for computers means sitting in a dark basement by yourself. But the reality is very different.

Lucy Onyango is a data analyst specialising in forensics at PwC. She’s at the sharp end of investigations into fraud, bribery or money laundering, helping to find patterns in data that indicate something unsavoury is going on.

At the moment, she’s testing out new software that allows her to search through massive data sets. A typical case may involve searching up to 40m records.

“It’s really interesting working with new technologies,” she says. “I recently worked on a payroll fraud. The people responsible for payroll had set up fake employee records. The money that was supposed to be going to these employees went to the fraudsters instead. We ran a series of tests which demonstrated this. It feels really good when you find something that makes a difference.”

You don’t have to come from a tech background – Onyango took a degree in mathematics at King’s College, London, and undertook a summer internship with PwC. She joined the firm soon after graduation. “When I started working, there weren’t that many women in the department, but over the past two years, the number has increased which is great to see,” she says. “Last year, our graduate intake had more women than men.”

Catherine Wilks is a data assurance senior manager at PwC. Her role involves helping clients to get the best insights from their data. She manages a team of 40 who work on data analytics and help to visualise data. She’s also active in Women in Technology and Women in Business, helping to encourage women to get into tech and develop their careers once they’re there.

It’s an exciting field, says Wilks, who has a PhD in theoretical particle physics from the University of Liverpool. “I recently helped an investment bank who created a dashboard to monitor their risks around trading – I’m helping them to ensure it’s implemented properly and they have the right buy-in from the business. I also help companies select the right tools for managing their data, which involves dealing with a lot of tech companies.”

Onyango says that if you want a career in tech, go for it. “Don’t be afraid to get involved. There are so many high-profile projects you can work on.”

Wilks agrees. “It’s an amazing time to be a woman in tech. PwC is really supportive and will do anything to help you and your career.”

To find out about a tech career with PwC, visit pwc.co.uk/careers

See theguardian.com/paid-for-content for GNM’s commercial content guidelines
How to get your app noticed

It’s a hugely crowded market, but get the app - and your PR – just right and the rewards can be huge, says Lucy Jolin

If you’re looking to break into a tech career, building an app can be a great place to start. “Employers are really looking for app building skills, and that will only increase as more emerging markets get their hands on affordable smartphones,” says Liz Keller, head of strategy at mobile app developers Flipside.

But building an app isn’t an easy route to riches, she points out. “You are playing in an incredibly crowded field - for all the apps launched, very few are used more than once. Most are relegated to the fourth or fifth page of your very crowded phone.”

You need to put your marketing hat on right from the start, says Jacki Vause, founder of mobile technology PR agency Dimoso. “Otherwise you end up with the metaphorical version of a bathroom in the cellar and the kitchen at the top of the house. For example, how are you going to communicate with your users through your app? Trip Advisor is great for that - when you write a review, you get a little note saying thanks and that it’s been read by, say, 15,000 people.”

Small things matter, says John Ozimek, director and co-founder of tech PR agency Big Ideas Machine. “The icon you choose to represent your app on the store, for example, is absolutely crucial. Make the most of all the research that’s on the web. You can use free tools like App Annie to see exactly how many downloads an app has, so you can see what’s working.”

Getting your app in the “featured” slot on the Google Android App store, or Apple’s App Store, can be a great push. But the two markets are very different, Ozimek points out. “Apple is a hardware company, so the best chance of success you can have with Apple is to create an app that really shows what their devices can do. Google is different - they go for what is popular, and so they will wait to see the performance of the app in the store before considering which ones to feature.”

And, perhaps most importantly, do whatever you can to get your app recommended on social networks. App developers Gram Games were down to their last funds when they created 1010!, a simple Tetris-influenced game.

“Recommendability is where the indie developers win out,” says Vause. “Gram just got this game 100% right and it went viral. It was simple and compelling, and the user communication was great.”

Get ahead in the cloud

Companies are ditching the servers to embrace cloud computing. How do you get a job in this thriving area?

Banks of computers in the office basement are set to become a thing of the past. More and more companies are moving to the cloud: storing their data and programs on remote servers, hosted on the internet.

This new world needs new skills: the 2016 State of the Cloud survey found that as more companies have shifted to the cloud, their main concern is no longer cloud security but lack of expertise. So what’s the best route into cloud computing?

You’ll need a first degree in a related subject, such as computing, and then you can specialise with a master’s. However, there are also plenty of online courses available if you want to get a taste of what cloud computing involves.

Online course provider Coursera, for example, offers the cloud computing specialisation, six courses created by the University of Illinois at Urbana-Champaign, at £60 per course, from beginner to advanced level. “Our cloud computing completion badge is the second-most posted badge on LinkedIn,” says Nikhil Sinha, chief business officer at Coursera. “Many of our students are already employed and an online platform allows them to gain new skills or re-skill themselves at their own pace.”

Two distinct categories of cloud computing are emerging, says Paul Watson, professor of computer science and director of the Digital Institute at Newcastle University. “One is where a company puts its information on the cloud, rather than buying its own servers. That needs the traditional IT skills of designing and building new server-based systems that are secure and dependable, and scale up. These skills carry over [from a computer science degree] and you don’t need to know much more that’s new!”

The really big demand, he says, is for the skills needed to gain insights from the vast amounts of data generated by cloud computing. The cloud computing MSc at Newcastle covers both these areas, with modules ranging from building cloud applications and information security to big data analytics and machine learning.

It’s also possible to study for an MSc online. The Cork Institute of Technology’s (CIT) cloud computing MSc has been running for six years and was originally developed in partnership with big tech employers such as IBM and Microsoft. CIT has built its own cloud infrastructure, meaning students can study using cloud technologies.

“It’s an ever-changing field, so we have to be continually updating,” says Donna O’Shea, assistant lecturer in cloud computing at CIT. “We see more and more companies migrating from their private infrastructure to public infrastructure. That’s both SMEs and big companies – so there’s an increasing need for professionals.”
Data science

Big data means big money

If you’ve got an affinity for statistics and software engineering, data science could be for you, says David Benady

The Harvard Business Review has called it the sexiest job of the 21st century. It commands some of the highest salaries in technology and every forward-thinking business needs at least one.

The role of data scientist is at the cutting edge of the big data revolution. Those employed in this role analyse data and create innovative ways of putting it to use - and make money from it. That could mean examining shopping habits to create product recommendations on ecommerce sites or finding ways to serve relevant ads to web pages.

The proliferation of huge data sets, created by the flood of information emanating from the growing number of digital interactions, has prompted huge demand for specialists who can work with this information - an estimated 56,000 new jobs in data will be created in the UK each year until 2020, according to a report by industry body the Tech Partnership in May.

These jobs will include data analysts, who draw insights from data, and data engineers, responsible for the upkeep and the upkeep of ever-growing databases.
The title of data scientist is slightly controversial, dismissed by some as the latest buzzword, a glorified term for a data analyst or just a new name for a statistician. But data scientists are supposed to marry the technical aspects of data with the ability to create business strategies and boost revenue and profits.

Theo Arnold-Foster, who is studying for an MBA in big data at IE Business School in Madrid, says his course is “roughly split between technical classes, such as coding and statistics, and the business implications of big data,” adding that the two are combined in group assignments. Graduates such as Arnold-Foster can expect to be earning more than £70,000 a year once they have three years’ experience in the field.

Data science took off ten years ago, when business intelligence units - which analyse data to find ways of improving company performance - were supercharged by computer science and machine learning. But data scientists need more than the ability to work with advanced technology and numbers; they need a good knowledge of the challenges facing a business to work out how data can be used to boost revenues. As ever in the technology field, it is all about using sophisticated computing skills to create real-world results.

A varied skillset
‘You need statistics, machine learning and software engineering’

Nick Sorros is a London-based data scientist who has been working in the field for three years. His latest job is at leads, a crowdfunding start up where investors are offered equity in newly launched ventures. His task is to use data science to analyse why investors get interested in certain companies on the site and to generate suggestions for startups about what is likely to make them successful. He is also designing an algorithm to recommend to investors further opportunities similar to those they have already backed.

Sorros has a degree in electrical engineering from the University of Patras in Greece and a master’s in advanced computing from Imperial College London. His first job as a data scientist was at Convosocial, a social customer service provider.

“The funny thing about my first data science job was that I had applied when I was doing my master’s but was rejected as someone who didn’t have experience. Then I worked as a software engineer and I reapplied for that job and I got it. So I would say there was faith on their part about my skills,” he says. He adds that there is a shortage of data scientists at the moment, so he has no trouble finding work. “No data scientist has all the tools needed for the job because it is such a diverse thing. You need statistics, you need software engineering and machine learning,” he says. Anyone who can combine those skills with an intuitive approach to business will have no trouble finding work.

A jobseeker’s market: Nick Sorros says there’s a shortage of data scientists

Threatened by the rise of artificial intelligence, the job of the data scientist will undergo a shakeup in the next decade as virtual reality takes off, according to Theo Arnold-Foster.

“The funny thing about my first data science job was that I had applied when I was doing my master’s but was rejected as someone who didn’t have experience.” He’s just finished work on a ‘world first’ headset that is ‘roughly split between technical and intuitive approach’, he says. He worked as a games tester at Sega, then at EA. “It was a really good first step into the industry, but then I decided I wanted to make games, not test them.” That desire took him to the MA in computer games and design at the National Film and Television School. He created a virtual reality game called Sandman: Sony saw it at his graduation show and asked him for an interview. Two and a half years later, he’s still there.

“My advice? Designers have to be technically capable and build things on their own, so get your head around that stuff. Teach yourself – if you wanted to be a painter, that’s what you’d do.”

Self-made man
‘Teach yourself. If you wanted to be a painter, that’s what you’d do’

A games designer at Sony, Albert Bentall, 26, does, says, “a lot of everything. It’s a very varied role that can involve anything from building 3D models to scripting.” He’s just finished work on London Heist, a Guy Ritchie-esque gangster thriller included in VR Worlds, a package of games intended to make the most of the PlayStation VR headset.

“There’s no such thing as one route into design, as Bentall’s CV demonstrates. He studied theatre direction, then did jobs in television. “But I wasn’t really that into it. I’d go home and play video games. So I decided to focus on that.”

He worked as a games tester at Sega, then at EA. “It was a really good first step into the industry, but then I decided I wanted to make games, not test them.” That desire took him to the MA in computer games and design at the National Film and Television School. He created a virtual reality game called Sandman: Sony saw it at his graduation show and asked him for an interview. Two and a half years later, he’s still there.

“My advice? Designers have to be technically capable and build things on their own, so get your head around that stuff. Teach yourself – if you wanted to be a painter, that’s what you’d do.”

A varied skillset
‘You need statistics, machine learning and software engineering’

Nick Sorros is a London-based data scientist who has been working in the field for three years. His latest job is at leads, a crowdfunding start up where investors are offered equity in newly launched ventures. His task is to use data science to analyse why investors get interested in certain companies on the site and to generate suggestions for startups about what is likely to make them successful. He is also designing an algorithm to recommend to investors further opportunities similar to those they have already backed.

Sorros has a degree in electrical engineering from the University of Patras in Greece and a master’s in advanced computing from Imperial College London. His first job as a data scientist was at Convosocial, a social customer service provider.

“The funny thing about my first data science job was that I had applied when I was doing my master’s but was rejected as someone who didn’t have experience. Then I worked as a software engineer and I reapplied for that job and I got it. So I would say there was faith on their part about my skills,” he says. He adds that there is a shortage of data scientists at the moment, so he has no trouble finding work. “No data scientist has all the tools needed for the job because it is such a diverse thing. You need statistics, you need software engineering and machine learning,” he says. Anyone who can combine those skills with an intuitive approach to business will have no trouble finding work.

A jobseeker’s market: Nick Sorros says there’s a shortage of data scientists